Compare commits

...
Sign in to create a new pull request.

1 commit

Author SHA1 Message Date
f43544d15d who knows 2025-09-26 09:18:22 -06:00
19 changed files with 2379 additions and 2063 deletions

8
.gitignore vendored
View file

@ -1,5 +1,5 @@
.idea/ .idea/
bin/ bin/
cmake-build-debug/ cmake-build-debug/
include/ include/
lib/ lib/

View file

@ -1,35 +1,35 @@
// //
// Created by benmo on 9/28/2020. // Created by benmo on 9/28/2020.
// //
#ifndef SFML_TEMPLATE_ASTEROID_H #ifndef SFML_TEMPLATE_ASTEROID_H
#define SFML_TEMPLATE_ASTEROID_H #define SFML_TEMPLATE_ASTEROID_H
#include "Entity.h" #include "Entity.h"
class Asteroid : public Entity { class Asteroid : public Entity {
public: public:
Asteroid(int health, int points, const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : Entity(health, points, texture, scale, xPos, yPos, velocity, direction) { Asteroid(int health, int points, const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : Entity(health, points, texture, scale, xPos, yPos, velocity, direction) {
size = health; size = health;
type = "asteroid"; type = "asteroid";
} }
int getSize() const { int getSize() const {
return size; return size;
} }
void hit(vector<MySprite> &animations, Sound &sound, Texture &explosion, default_random_engine &gen) { void hit(vector<MySprite> &animations, Sound &sound, Texture &explosion, default_random_engine &gen) {
uniform_int_distribution<int> angle(0, 359); uniform_int_distribution<int> angle(0, 359);
animations.emplace_back(explosion, getSize()*65, getXPos(), getYPos(), 0, angle(gen)); animations.emplace_back(explosion, getSize()*65, getXPos(), getYPos(), 0, angle(gen));
animations[animations.size() - 1].makeAnimated(5, 5, 0.01,23); animations[animations.size() - 1].makeAnimated(5, 5, 0.01,23);
sound.setVolume(100.0/((4-size)/1.5)); sound.setVolume(100.0/(4-size));
sound.play(); sound.play();
} }
private: private:
int size; int size;
}; };
#endif //SFML_TEMPLATE_ASTEROID_H #endif //SFML_TEMPLATE_ASTEROID_H

View file

@ -1,190 +1,190 @@
/* /*
* File: collision.cpp * File: collision.cpp
* Author: Nick (original version), ahnonay (SFML2 compatibility) * Author: Nick (original version), ahnonay (SFML2 compatibility)
*/ */
#include <map> #include <map>
#include "Collision.h" #include "Collision.h"
namespace Collision namespace Collision
{ {
class BitmaskManager class BitmaskManager
{ {
public: public:
~BitmaskManager() { ~BitmaskManager() {
std::map<const sf::Texture*, sf::Uint8*>::const_iterator end = Bitmasks.end(); std::map<const sf::Texture*, sf::Uint8*>::const_iterator end = Bitmasks.end();
for (std::map<const sf::Texture*, sf::Uint8*>::const_iterator iter = Bitmasks.begin(); iter!=end; iter++) for (std::map<const sf::Texture*, sf::Uint8*>::const_iterator iter = Bitmasks.begin(); iter!=end; iter++)
delete [] iter->second; delete [] iter->second;
} }
sf::Uint8 GetPixel (const sf::Uint8* mask, const sf::Texture* tex, unsigned int x, unsigned int y) { sf::Uint8 GetPixel (const sf::Uint8* mask, const sf::Texture* tex, unsigned int x, unsigned int y) {
if (x>tex->getSize().x||y>tex->getSize().y) if (x>tex->getSize().x||y>tex->getSize().y)
return 0; return 0;
return mask[x+y*tex->getSize().x]; return mask[x+y*tex->getSize().x];
} }
sf::Uint8* GetMask (const sf::Texture* tex) { sf::Uint8* GetMask (const sf::Texture* tex) {
sf::Uint8* mask; sf::Uint8* mask;
std::map<const sf::Texture*, sf::Uint8*>::iterator pair = Bitmasks.find(tex); std::map<const sf::Texture*, sf::Uint8*>::iterator pair = Bitmasks.find(tex);
if (pair==Bitmasks.end()) if (pair==Bitmasks.end())
{ {
sf::Image img = tex->copyToImage(); sf::Image img = tex->copyToImage();
mask = CreateMask (tex, img); mask = CreateMask (tex, img);
} }
else else
mask = pair->second; mask = pair->second;
return mask; return mask;
} }
sf::Uint8* CreateMask (const sf::Texture* tex, const sf::Image& img) { sf::Uint8* CreateMask (const sf::Texture* tex, const sf::Image& img) {
sf::Uint8* mask = new sf::Uint8[tex->getSize().y*tex->getSize().x]; sf::Uint8* mask = new sf::Uint8[tex->getSize().y*tex->getSize().x];
for (unsigned int y = 0; y<tex->getSize().y; y++) for (unsigned int y = 0; y<tex->getSize().y; y++)
{ {
for (unsigned int x = 0; x<tex->getSize().x; x++) for (unsigned int x = 0; x<tex->getSize().x; x++)
mask[x+y*tex->getSize().x] = img.getPixel(x,y).a; mask[x+y*tex->getSize().x] = img.getPixel(x,y).a;
} }
Bitmasks.insert(std::pair<const sf::Texture*, sf::Uint8*>(tex,mask)); Bitmasks.insert(std::pair<const sf::Texture*, sf::Uint8*>(tex,mask));
return mask; return mask;
} }
private: private:
std::map<const sf::Texture*, sf::Uint8*> Bitmasks; std::map<const sf::Texture*, sf::Uint8*> Bitmasks;
}; };
BitmaskManager Bitmasks; BitmaskManager Bitmasks;
bool PixelPerfectTest(const sf::Sprite& Object1, const sf::Sprite& Object2, sf::Uint8 AlphaLimit) { bool PixelPerfectTest(const sf::Sprite& Object1, const sf::Sprite& Object2, sf::Uint8 AlphaLimit) {
sf::FloatRect Intersection; sf::FloatRect Intersection;
if (Object1.getGlobalBounds().intersects(Object2.getGlobalBounds(), Intersection)) { if (Object1.getGlobalBounds().intersects(Object2.getGlobalBounds(), Intersection)) {
sf::IntRect O1SubRect = Object1.getTextureRect(); sf::IntRect O1SubRect = Object1.getTextureRect();
sf::IntRect O2SubRect = Object2.getTextureRect(); sf::IntRect O2SubRect = Object2.getTextureRect();
sf::Uint8* mask1 = Bitmasks.GetMask(Object1.getTexture()); sf::Uint8* mask1 = Bitmasks.GetMask(Object1.getTexture());
sf::Uint8* mask2 = Bitmasks.GetMask(Object2.getTexture()); sf::Uint8* mask2 = Bitmasks.GetMask(Object2.getTexture());
// Loop through our pixels // Loop through our pixels
for (int i = Intersection.left; i < Intersection.left+Intersection.width; i++) { for (int i = Intersection.left; i < Intersection.left+Intersection.width; i++) {
for (int j = Intersection.top; j < Intersection.top+Intersection.height; j++) { for (int j = Intersection.top; j < Intersection.top+Intersection.height; j++) {
sf::Vector2f o1v = Object1.getInverseTransform().transformPoint(i, j); sf::Vector2f o1v = Object1.getInverseTransform().transformPoint(i, j);
sf::Vector2f o2v = Object2.getInverseTransform().transformPoint(i, j); sf::Vector2f o2v = Object2.getInverseTransform().transformPoint(i, j);
// Make sure pixels fall within the sprite's subrect // Make sure pixels fall within the sprite's subrect
if (o1v.x > 0 && o1v.y > 0 && o2v.x > 0 && o2v.y > 0 && if (o1v.x > 0 && o1v.y > 0 && o2v.x > 0 && o2v.y > 0 &&
o1v.x < O1SubRect.width && o1v.y < O1SubRect.height && o1v.x < O1SubRect.width && o1v.y < O1SubRect.height &&
o2v.x < O2SubRect.width && o2v.y < O2SubRect.height) { o2v.x < O2SubRect.width && o2v.y < O2SubRect.height) {
if (Bitmasks.GetPixel(mask1, Object1.getTexture(), (int)(o1v.x)+O1SubRect.left, (int)(o1v.y)+O1SubRect.top) > AlphaLimit && if (Bitmasks.GetPixel(mask1, Object1.getTexture(), (int)(o1v.x)+O1SubRect.left, (int)(o1v.y)+O1SubRect.top) > AlphaLimit &&
Bitmasks.GetPixel(mask2, Object2.getTexture(), (int)(o2v.x)+O2SubRect.left, (int)(o2v.y)+O2SubRect.top) > AlphaLimit) Bitmasks.GetPixel(mask2, Object2.getTexture(), (int)(o2v.x)+O2SubRect.left, (int)(o2v.y)+O2SubRect.top) > AlphaLimit)
return true; return true;
} }
} }
} }
} }
return false; return false;
} }
bool CreateTextureAndBitmask(sf::Texture &LoadInto, const std::string& Filename) bool CreateTextureAndBitmask(sf::Texture &LoadInto, const std::string& Filename)
{ {
sf::Image img; sf::Image img;
if (!img.loadFromFile(Filename)) if (!img.loadFromFile(Filename))
return false; return false;
if (!LoadInto.loadFromImage(img)) if (!LoadInto.loadFromImage(img))
return false; return false;
Bitmasks.CreateMask(&LoadInto, img); Bitmasks.CreateMask(&LoadInto, img);
return true; return true;
} }
sf::Vector2f GetSpriteCenter (const sf::Sprite& Object) sf::Vector2f GetSpriteCenter (const sf::Sprite& Object)
{ {
sf::FloatRect AABB = Object.getGlobalBounds(); sf::FloatRect AABB = Object.getGlobalBounds();
return sf::Vector2f (AABB.left+AABB.width/2.f, AABB.top+AABB.height/2.f); return sf::Vector2f (AABB.left+AABB.width/2.f, AABB.top+AABB.height/2.f);
} }
sf::Vector2f GetSpriteSize (const sf::Sprite& Object) sf::Vector2f GetSpriteSize (const sf::Sprite& Object)
{ {
sf::IntRect OriginalSize = Object.getTextureRect(); sf::IntRect OriginalSize = Object.getTextureRect();
sf::Vector2f Scale = Object.getScale(); sf::Vector2f Scale = Object.getScale();
return sf::Vector2f (OriginalSize.width*Scale.x, OriginalSize.height*Scale.y); return sf::Vector2f (OriginalSize.width*Scale.x, OriginalSize.height*Scale.y);
} }
bool CircleTest(const sf::Sprite& Object1, const sf::Sprite& Object2) { bool CircleTest(const sf::Sprite& Object1, const sf::Sprite& Object2) {
sf::Vector2f Obj1Size = GetSpriteSize(Object1); sf::Vector2f Obj1Size = GetSpriteSize(Object1);
sf::Vector2f Obj2Size = GetSpriteSize(Object2); sf::Vector2f Obj2Size = GetSpriteSize(Object2);
float Radius1 = (Obj1Size.x + Obj1Size.y) / 4; float Radius1 = (Obj1Size.x + Obj1Size.y) / 4;
float Radius2 = (Obj2Size.x + Obj2Size.y) / 4; float Radius2 = (Obj2Size.x + Obj2Size.y) / 4;
sf::Vector2f Distance = GetSpriteCenter(Object1)-GetSpriteCenter(Object2); sf::Vector2f Distance = GetSpriteCenter(Object1)-GetSpriteCenter(Object2);
return (Distance.x * Distance.x + Distance.y * Distance.y <= (Radius1 + Radius2) * (Radius1 + Radius2)); return (Distance.x * Distance.x + Distance.y * Distance.y <= (Radius1 + Radius2) * (Radius1 + Radius2));
} }
class OrientedBoundingBox // Used in the BoundingBoxTest class OrientedBoundingBox // Used in the BoundingBoxTest
{ {
public: public:
OrientedBoundingBox (const sf::Sprite& Object) // Calculate the four points of the OBB from a transformed (scaled, rotated...) sprite OrientedBoundingBox (const sf::Sprite& Object) // Calculate the four points of the OBB from a transformed (scaled, rotated...) sprite
{ {
sf::Transform trans = Object.getTransform(); sf::Transform trans = Object.getTransform();
sf::IntRect local = Object.getTextureRect(); sf::IntRect local = Object.getTextureRect();
Points[0] = trans.transformPoint(0.f, 0.f); Points[0] = trans.transformPoint(0.f, 0.f);
Points[1] = trans.transformPoint(local.width, 0.f); Points[1] = trans.transformPoint(local.width, 0.f);
Points[2] = trans.transformPoint(local.width, local.height); Points[2] = trans.transformPoint(local.width, local.height);
Points[3] = trans.transformPoint(0.f, local.height); Points[3] = trans.transformPoint(0.f, local.height);
} }
sf::Vector2f Points[4]; sf::Vector2f Points[4];
void ProjectOntoAxis (const sf::Vector2f& Axis, float& Min, float& Max) // Project all four points of the OBB onto the given axis and return the dotproducts of the two outermost points void ProjectOntoAxis (const sf::Vector2f& Axis, float& Min, float& Max) // Project all four points of the OBB onto the given axis and return the dotproducts of the two outermost points
{ {
Min = (Points[0].x*Axis.x+Points[0].y*Axis.y); Min = (Points[0].x*Axis.x+Points[0].y*Axis.y);
Max = Min; Max = Min;
for (int j = 1; j<4; j++) for (int j = 1; j<4; j++)
{ {
float Projection = (Points[j].x*Axis.x+Points[j].y*Axis.y); float Projection = (Points[j].x*Axis.x+Points[j].y*Axis.y);
if (Projection<Min) if (Projection<Min)
Min=Projection; Min=Projection;
if (Projection>Max) if (Projection>Max)
Max=Projection; Max=Projection;
} }
} }
}; };
bool BoundingBoxTest(const sf::Sprite& Object1, const sf::Sprite& Object2) { bool BoundingBoxTest(const sf::Sprite& Object1, const sf::Sprite& Object2) {
OrientedBoundingBox OBB1 (Object1); OrientedBoundingBox OBB1 (Object1);
OrientedBoundingBox OBB2 (Object2); OrientedBoundingBox OBB2 (Object2);
// Create the four distinct axes that are perpendicular to the edges of the two rectangles // Create the four distinct axes that are perpendicular to the edges of the two rectangles
sf::Vector2f Axes[4] = { sf::Vector2f Axes[4] = {
sf::Vector2f (OBB1.Points[1].x-OBB1.Points[0].x, sf::Vector2f (OBB1.Points[1].x-OBB1.Points[0].x,
OBB1.Points[1].y-OBB1.Points[0].y), OBB1.Points[1].y-OBB1.Points[0].y),
sf::Vector2f (OBB1.Points[1].x-OBB1.Points[2].x, sf::Vector2f (OBB1.Points[1].x-OBB1.Points[2].x,
OBB1.Points[1].y-OBB1.Points[2].y), OBB1.Points[1].y-OBB1.Points[2].y),
sf::Vector2f (OBB2.Points[0].x-OBB2.Points[3].x, sf::Vector2f (OBB2.Points[0].x-OBB2.Points[3].x,
OBB2.Points[0].y-OBB2.Points[3].y), OBB2.Points[0].y-OBB2.Points[3].y),
sf::Vector2f (OBB2.Points[0].x-OBB2.Points[1].x, sf::Vector2f (OBB2.Points[0].x-OBB2.Points[1].x,
OBB2.Points[0].y-OBB2.Points[1].y) OBB2.Points[0].y-OBB2.Points[1].y)
}; };
for (int i = 0; i<4; i++) // For each axis... for (int i = 0; i<4; i++) // For each axis...
{ {
float MinOBB1, MaxOBB1, MinOBB2, MaxOBB2; float MinOBB1, MaxOBB1, MinOBB2, MaxOBB2;
// ... project the points of both OBBs onto the axis ... // ... project the points of both OBBs onto the axis ...
OBB1.ProjectOntoAxis(Axes[i], MinOBB1, MaxOBB1); OBB1.ProjectOntoAxis(Axes[i], MinOBB1, MaxOBB1);
OBB2.ProjectOntoAxis(Axes[i], MinOBB2, MaxOBB2); OBB2.ProjectOntoAxis(Axes[i], MinOBB2, MaxOBB2);
// ... and check whether the outermost projected points of both OBBs overlap. // ... and check whether the outermost projected points of both OBBs overlap.
// If this is not the case, the Separating Axis Theorem states that there can be no collision between the rectangles // If this is not the case, the Separating Axis Theorem states that there can be no collision between the rectangles
if (!((MinOBB2<=MaxOBB1)&&(MaxOBB2>=MinOBB1))) if (!((MinOBB2<=MaxOBB1)&&(MaxOBB2>=MinOBB1)))
return false; return false;
} }
return true; return true;
} }
} }

View file

@ -1,77 +1,77 @@
/* /*
* File: collision.h * File: collision.h
* Authors: Nick Koirala (original version), ahnonay (SFML2 compatibility) * Authors: Nick Koirala (original version), ahnonay (SFML2 compatibility)
* *
* Collision Detection and handling class * Collision Detection and handling class
* For SFML2. * For SFML2.
Notice from the original version: Notice from the original version:
(c) 2009 - LittleMonkey Ltd (c) 2009 - LittleMonkey Ltd
This software is provided 'as-is', without any express or This software is provided 'as-is', without any express or
implied warranty. In no event will the authors be held implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software. liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute including commercial applications, and to alter it and redistribute
it freely, subject to the following restrictions: it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; 1. The origin of this software must not be misrepresented;
you must not claim that you wrote the original software. you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but in the product documentation would be appreciated but
is not required. is not required.
2. Altered source versions must be plainly marked as such, 2. Altered source versions must be plainly marked as such,
and must not be misrepresented as being the original software. and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any 3. This notice may not be removed or altered from any
source distribution. source distribution.
* *
* Created on 30 January 2009, 11:02 * Created on 30 January 2009, 11:02
*/ */
#ifndef SFML_TEMPLATE_COLLISION_H #ifndef SFML_TEMPLATE_COLLISION_H
#define SFML_TEMPLATE_COLLISION_H #define SFML_TEMPLATE_COLLISION_H
#include <SFML\Graphics.hpp> #include <SFML\Graphics.hpp>
namespace Collision { namespace Collision {
////// //////
/// Test for a collision between two sprites by comparing the alpha values of overlapping pixels /// Test for a collision between two sprites by comparing the alpha values of overlapping pixels
/// Supports scaling and rotation /// Supports scaling and rotation
/// AlphaLimit: The threshold at which a pixel becomes "solid". If AlphaLimit is 127, a pixel with /// AlphaLimit: The threshold at which a pixel becomes "solid". If AlphaLimit is 127, a pixel with
/// alpha value 128 will cause a collision and a pixel with alpha value 126 will not. /// alpha value 128 will cause a collision and a pixel with alpha value 126 will not.
/// ///
/// This functions creates bitmasks of the textures of the two sprites by /// This functions creates bitmasks of the textures of the two sprites by
/// downloading the textures from the graphics card to memory -> SLOW! /// downloading the textures from the graphics card to memory -> SLOW!
/// You can avoid this by using the "CreateTextureAndBitmask" function /// You can avoid this by using the "CreateTextureAndBitmask" function
////// //////
bool PixelPerfectTest(const sf::Sprite& Object1 ,const sf::Sprite& Object2, sf::Uint8 AlphaLimit = 0); bool PixelPerfectTest(const sf::Sprite& Object1 ,const sf::Sprite& Object2, sf::Uint8 AlphaLimit = 0);
////// //////
/// Replaces Texture::loadFromFile /// Replaces Texture::loadFromFile
/// Load an imagefile into the given texture and create a bitmask for it /// Load an imagefile into the given texture and create a bitmask for it
/// This is much faster than creating the bitmask for a texture on the first run of "PixelPerfectTest" /// This is much faster than creating the bitmask for a texture on the first run of "PixelPerfectTest"
/// ///
/// The function returns false if the file could not be opened for some reason /// The function returns false if the file could not be opened for some reason
////// //////
bool CreateTextureAndBitmask(sf::Texture &LoadInto, const std::string& Filename); bool CreateTextureAndBitmask(sf::Texture &LoadInto, const std::string& Filename);
////// //////
/// Test for collision using circle collision dection /// Test for collision using circle collision dection
/// Radius is averaged from the dimensions of the sprite so /// Radius is averaged from the dimensions of the sprite so
/// roughly circular objects will be much more accurate /// roughly circular objects will be much more accurate
////// //////
bool CircleTest(const sf::Sprite& Object1, const sf::Sprite& Object2); bool CircleTest(const sf::Sprite& Object1, const sf::Sprite& Object2);
////// //////
/// Test for bounding box collision using the Separating Axis Theorem /// Test for bounding box collision using the Separating Axis Theorem
/// Supports scaling and rotation /// Supports scaling and rotation
////// //////
bool BoundingBoxTest(const sf::Sprite& Object1, const sf::Sprite& Object2); bool BoundingBoxTest(const sf::Sprite& Object1, const sf::Sprite& Object2);
} }
#endif //SFML_TEMPLATE_COLLISION_H #endif //SFML_TEMPLATE_COLLISION_H

View file

@ -1,34 +1,34 @@
// //
// Created by benmo on 9/28/2020. // Created by benmo on 9/28/2020.
// //
#ifndef SFML_TEMPLATE_ENTITY_H #ifndef SFML_TEMPLATE_ENTITY_H
#define SFML_TEMPLATE_ENTITY_H #define SFML_TEMPLATE_ENTITY_H
class Entity : public Mount { class Entity : public Mount {
public: public:
Entity(float health, int points, const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : Mount(texture, scale, xPos, yPos, velocity, direction) { Entity(float health, int points, const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : Mount(texture, scale, xPos, yPos, velocity, direction) {
this->health = health; this->health = health;
this->points = points; this->points = points;
} }
float getHealth() const { float getHealth() const {
return health; return health;
} }
void setHealth(float health) { void setHealth(float health) {
this->health = health; this->health = health;
} }
void hit() {}; void hit() {};
int getPoints() const { int getPoints() const {
return points; return points;
} }
protected: protected:
float health; float health;
int points; int points;
}; };
#endif //SFML_TEMPLATE_ENTITY_H #endif //SFML_TEMPLATE_ENTITY_H

6
Game.h
View file

@ -16,7 +16,7 @@ private:
sf::Texture loadingBarFull; sf::Texture loadingBarFull;
//update total //update total
int totalTextures = 53; int totalTextures = 58;
int loadedTextures = 0; int loadedTextures = 0;
sf::Font oxan; sf::Font oxan;
@ -231,7 +231,7 @@ private:
pewBuff.loadFromFile("data\\Sounds\\pew.wav"); pewBuff.loadFromFile("data\\Sounds\\pew.wav");
updateLoader(window, "Loading sounds..."); updateLoader(window, "Loading sounds...");
pew.setBuffer(pewBuff); pew.setBuffer(pewBuff);
pew.setVolume(25); pew.setVolume(15);
Sound enemyBoom; Sound enemyBoom;
SoundBuffer enemyBoomBuff; SoundBuffer enemyBoomBuff;
@ -952,8 +952,6 @@ private:
int spaceBetween = 150 - widthEntryDate; int spaceBetween = 150 - widthEntryDate;
int dateLoc = (window.getSize().x - (widthEntry + widthEntryDate + spaceBetween))/2; int dateLoc = (window.getSize().x - (widthEntry + widthEntryDate + spaceBetween))/2;
cout << widthEntryDate << " " << widthEntry << " " << spaceBetween << endl;
highScoreEntriesDates[j].setPosition(dateLoc, window.getSize().y/1.8 + (25 * j)); highScoreEntriesDates[j].setPosition(dateLoc, window.getSize().y/1.8 + (25 * j));
highScoreEntries[j].setPosition(dateLoc + 150, window.getSize().y/1.8 + (25 * j)); highScoreEntries[j].setPosition(dateLoc + 150, window.getSize().y/1.8 + (25 * j));
} }

1348
LICENSE

File diff suppressed because it is too large Load diff

1351
Menu.h

File diff suppressed because it is too large Load diff

104
Mount.h
View file

@ -1,52 +1,52 @@
// //
// Created by benmo on 10/12/2020. // Created by benmo on 10/12/2020.
// //
#ifndef SFML_TEMPLATE_MOUNT_H #ifndef SFML_TEMPLATE_MOUNT_H
#define SFML_TEMPLATE_MOUNT_H #define SFML_TEMPLATE_MOUNT_H
class Mount : public MySprite { class Mount : public MySprite {
protected: protected:
vector<Rider> riders; vector<Rider> riders;
public: public:
Mount(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : MySprite(texture, scale, xPos, yPos, velocity, direction) {} Mount(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : MySprite(texture, scale, xPos, yPos, velocity, direction) {}
bool hasRider() { bool hasRider() {
return !riders.empty(); return !riders.empty();
} }
void update(RenderWindow* window = nullptr) { void update(RenderWindow* window = nullptr) {
MySprite::update(window); MySprite::update(window);
for (Rider &r : riders) { for (Rider &r : riders) {
if (r.doesFollowPosition()) r.setPosition(getPosition()); if (r.doesFollowPosition()) r.setPosition(getPosition());
if (r.doesFollowDirection()) r.setDirection(getDirection()); if (r.doesFollowDirection()) r.setDirection(getDirection());
} }
} }
void addRider(Rider &sprite, int index = -1) { void addRider(Rider &sprite, int index = -1) {
if (index == -1) { if (index == -1) {
riders.push_back(sprite); riders.push_back(sprite);
riders[riders.size() - 1].setPosition(getPosition()); riders[riders.size() - 1].setPosition(getPosition());
} else { } else {
riders.insert(riders.begin() + index, sprite); riders.insert(riders.begin() + index, sprite);
riders[index].setPosition(getPosition()); riders[index].setPosition(getPosition());
} }
} }
void removeRider(int index = -1) { void removeRider(int index = -1) {
if (index == -1) riders.pop_back(); if (index == -1) riders.pop_back();
else riders.erase(riders.begin() + index); else riders.erase(riders.begin() + index);
} }
vector<Rider> getRiders() { vector<Rider> getRiders() {
return riders; return riders;
} }
vector<Rider>* getRidersForEdit() { vector<Rider>* getRidersForEdit() {
return &riders; return &riders;
} }
}; };
#endif //SFML_TEMPLATE_MOUNT_H #endif //SFML_TEMPLATE_MOUNT_H

View file

@ -1,317 +1,317 @@
// //
// Created by benmo on 2/14/2020. // Created by benmo on 2/14/2020.
// //
#ifndef SFML_TEMPLATE_SPRITE_H #ifndef SFML_TEMPLATE_SPRITE_H
#define SFML_TEMPLATE_SPRITE_H #define SFML_TEMPLATE_SPRITE_H
#include <string> #include <string>
#include <SFML/Graphics.hpp> #include <SFML/Graphics.hpp>
#include <cmath> #include <cmath>
using namespace sf; using namespace sf;
class MySprite: public sf::Sprite{ class MySprite: public sf::Sprite{
protected: protected:
struct Physics { struct Physics {
float velocity, direction, acceleration, maxVelocity, minVelocity; float velocity, direction, acceleration, maxVelocity, minVelocity;
float rotVelocity, rotAcceleration, maxRotVelocity; float rotVelocity, rotAcceleration, maxRotVelocity;
float xPos, yPos; float xPos, yPos;
}; };
struct Animation { struct Animation {
float frameLength; float frameLength;
unsigned int currframe = 0, columns, height, width, numFrames; unsigned int currframe = 0, columns, height, width, numFrames;
Clock clock; Clock clock;
bool isAnimated = false, isPlayed = false; bool isAnimated = false, isPlayed = false;
IntRect textureRect; IntRect textureRect;
}; };
Physics spritePhysics{}; Physics spritePhysics{};
Animation spriteAnimation{}; Animation spriteAnimation{};
bool toErase = false, circularHitbox = false; bool toErase = false, circularHitbox = false;
string type = "Sprite"; string type = "Sprite";
public: public:
enum EdgeBehavior { enum EdgeBehavior {
IGNORE, LOOP, BOUNCE IGNORE, LOOP, BOUNCE
}; };
EdgeBehavior edgeBehavior = IGNORE; EdgeBehavior edgeBehavior = IGNORE;
constexpr static const double PI = 3.1415926; constexpr static const double PI = 3.1415926;
static double distance(sf::Vector2f pos1, sf::Vector2f pos2) { static double distance(sf::Vector2f pos1, sf::Vector2f pos2) {
return sqrt(pow(pos2.x - pos1.x, 2) + pow(pos2.y - pos1.y, 2)); return sqrt(pow(pos2.x - pos1.x, 2) + pow(pos2.y - pos1.y, 2));
} }
MySprite() : sf::Sprite() { MySprite() : sf::Sprite() {
spritePhysics.velocity = 0; spritePhysics.velocity = 0;
spritePhysics.xPos = 0; spritePhysics.xPos = 0;
spritePhysics.yPos = 0; spritePhysics.yPos = 0;
spritePhysics.direction = 0; spritePhysics.direction = 0;
setOrigin(getGlobalBounds().width/2,getGlobalBounds().height/2); setOrigin(getGlobalBounds().width/2,getGlobalBounds().height/2);
} }
explicit MySprite(const sf::Texture &texture) : sf::Sprite(texture) { explicit MySprite(const sf::Texture &texture) : sf::Sprite(texture) {
spritePhysics.velocity = 0; spritePhysics.velocity = 0;
spritePhysics.xPos = 0; spritePhysics.xPos = 0;
spritePhysics.yPos = 0; spritePhysics.yPos = 0;
spritePhysics.direction = 0; spritePhysics.direction = 0;
setOrigin(getGlobalBounds().width/2,getGlobalBounds().height/2); setOrigin(getGlobalBounds().width/2,getGlobalBounds().height/2);
} }
MySprite(const sf::Texture &texture, float scale) : sf::Sprite(texture) { MySprite(const sf::Texture &texture, float scale) : sf::Sprite(texture) {
spritePhysics.velocity = 0; spritePhysics.velocity = 0;
spritePhysics.xPos = 0; spritePhysics.xPos = 0;
spritePhysics.yPos = 0; spritePhysics.yPos = 0;
spritePhysics.direction = 0; spritePhysics.direction = 0;
setOrigin(getGlobalBounds().width/2,getGlobalBounds().height/2); setOrigin(getGlobalBounds().width/2,getGlobalBounds().height/2);
setScale(scale/100, scale/100); setScale(scale/100, scale/100);
} }
MySprite(const sf::Texture &texture, const sf::IntRect &rectangle) : sf::Sprite(texture, rectangle) { MySprite(const sf::Texture &texture, const sf::IntRect &rectangle) : sf::Sprite(texture, rectangle) {
spritePhysics.velocity = 0; spritePhysics.velocity = 0;
spritePhysics.xPos = 0; spritePhysics.xPos = 0;
spritePhysics.yPos = 0; spritePhysics.yPos = 0;
spritePhysics.direction = 0; spritePhysics.direction = 0;
setOrigin(rectangle.width/(float)2.0,rectangle.height/(float)2.0); setOrigin(rectangle.width/(float)2.0,rectangle.height/(float)2.0);
} }
MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : sf::Sprite(texture) { MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : sf::Sprite(texture) {
spritePhysics.velocity = velocity; spritePhysics.velocity = velocity;
spritePhysics.xPos = xPos; spritePhysics.xPos = xPos;
spritePhysics.yPos = yPos; spritePhysics.yPos = yPos;
spritePhysics.direction = direction; spritePhysics.direction = direction;
setScale(scale/100, scale/100); setScale(scale/100, scale/100);
setOrigin(getLocalBounds().width/2, getLocalBounds().height/2); setOrigin(getLocalBounds().width/2, getLocalBounds().height/2);
setPosition(spritePhysics.xPos,spritePhysics.yPos); setPosition(spritePhysics.xPos,spritePhysics.yPos);
setRotation(direction); setRotation(direction);
} }
MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float maxVelocity, float direction, float rotVelocity, float maxRotVelocity) : sf::Sprite(texture) { MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float maxVelocity, float direction, float rotVelocity, float maxRotVelocity) : sf::Sprite(texture) {
spritePhysics.velocity = velocity; spritePhysics.velocity = velocity;
spritePhysics.xPos = xPos; spritePhysics.xPos = xPos;
spritePhysics.yPos = yPos; spritePhysics.yPos = yPos;
spritePhysics.direction = direction; spritePhysics.direction = direction;
spritePhysics.rotVelocity = rotVelocity; spritePhysics.rotVelocity = rotVelocity;
spritePhysics.maxVelocity = maxVelocity; spritePhysics.maxVelocity = maxVelocity;
spritePhysics.maxRotVelocity = maxRotVelocity; spritePhysics.maxRotVelocity = maxRotVelocity;
setScale(scale/100, scale/100); setScale(scale/100, scale/100);
setOrigin(getLocalBounds().width/2, getLocalBounds().height/2); setOrigin(getLocalBounds().width/2, getLocalBounds().height/2);
setPosition(spritePhysics.xPos,spritePhysics.yPos); setPosition(spritePhysics.xPos,spritePhysics.yPos);
setRotation(direction); setRotation(direction);
} }
MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float acceleration, float maxVelocity, float direction, float rotVelocity, float rotAcceleration, float maxRotVelocity) : sf::Sprite(texture) { MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float acceleration, float maxVelocity, float direction, float rotVelocity, float rotAcceleration, float maxRotVelocity) : sf::Sprite(texture) {
spritePhysics.velocity = velocity; spritePhysics.velocity = velocity;
spritePhysics.xPos = xPos; spritePhysics.xPos = xPos;
spritePhysics.yPos = yPos; spritePhysics.yPos = yPos;
spritePhysics.direction = direction; spritePhysics.direction = direction;
spritePhysics.rotVelocity = rotVelocity; spritePhysics.rotVelocity = rotVelocity;
spritePhysics.maxVelocity = maxVelocity; spritePhysics.maxVelocity = maxVelocity;
spritePhysics.maxRotVelocity = maxRotVelocity; spritePhysics.maxRotVelocity = maxRotVelocity;
spritePhysics.acceleration = acceleration; spritePhysics.acceleration = acceleration;
spritePhysics.rotAcceleration = rotAcceleration; spritePhysics.rotAcceleration = rotAcceleration;
setScale(scale/100, scale/100); setScale(scale/100, scale/100);
setOrigin(getLocalBounds().width/2, getLocalBounds().height/2); setOrigin(getLocalBounds().width/2, getLocalBounds().height/2);
setPosition(spritePhysics.xPos,spritePhysics.yPos); setPosition(spritePhysics.xPos,spritePhysics.yPos);
setRotation(direction); setRotation(direction);
} }
MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float maxVelocity, float direction) : sf::Sprite(texture) { MySprite(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float maxVelocity, float direction) : sf::Sprite(texture) {
spritePhysics.velocity = velocity; spritePhysics.velocity = velocity;
spritePhysics.xPos = xPos; spritePhysics.xPos = xPos;
spritePhysics.yPos = yPos; spritePhysics.yPos = yPos;
spritePhysics.direction = direction; spritePhysics.direction = direction;
spritePhysics.maxVelocity = maxVelocity; spritePhysics.maxVelocity = maxVelocity;
setScale(scale/100, scale/100); setScale(scale/100, scale/100);
setOrigin(getLocalBounds().width/2, getLocalBounds().height/2); setOrigin(getLocalBounds().width/2, getLocalBounds().height/2);
setPosition(spritePhysics.xPos,spritePhysics.yPos); setPosition(spritePhysics.xPos,spritePhysics.yPos);
setRotation(direction); setRotation(direction);
} }
void makeAnimated(int rows, int columns, float length, int frames = 0) { void makeAnimated(int rows, int columns, float length, int frames = 0) {
spriteAnimation.height = getTexture()->getSize().y/rows; spriteAnimation.height = getTexture()->getSize().y/rows;
spriteAnimation.width = getTexture()->getSize().x/columns; spriteAnimation.width = getTexture()->getSize().x/columns;
spriteAnimation.frameLength = length; spriteAnimation.frameLength = length;
spriteAnimation.columns = columns; spriteAnimation.columns = columns;
if (frames == 0) spriteAnimation.numFrames = rows*columns; if (frames == 0) spriteAnimation.numFrames = rows*columns;
else spriteAnimation.numFrames = frames; else spriteAnimation.numFrames = frames;
spriteAnimation.isAnimated = true; spriteAnimation.isAnimated = true;
spriteAnimation.textureRect = IntRect(0, 0, spriteAnimation.width, spriteAnimation.height); spriteAnimation.textureRect = IntRect(0, 0, spriteAnimation.width, spriteAnimation.height);
setTextureRect(spriteAnimation.textureRect); setTextureRect(spriteAnimation.textureRect);
setOrigin(spriteAnimation.width/2.0, spriteAnimation.height/2.0); setOrigin(spriteAnimation.width/2.0, spriteAnimation.height/2.0);
} }
virtual void update(RenderWindow* window = nullptr) { virtual void update(RenderWindow* window = nullptr) {
spritePhysics.xPos += cos(spritePhysics.direction * (PI/180.0)) * spritePhysics.velocity; spritePhysics.xPos += cos(spritePhysics.direction * (PI/180.0)) * spritePhysics.velocity;
spritePhysics.yPos += -(sin(spritePhysics.direction * (PI/180.0)) * spritePhysics.velocity); spritePhysics.yPos += -(sin(spritePhysics.direction * (PI/180.0)) * spritePhysics.velocity);
if (edgeBehavior == LOOP) { if (edgeBehavior == LOOP) {
if (spritePhysics.xPos <= -getGlobalBounds().width) if (spritePhysics.xPos <= -getGlobalBounds().width)
spritePhysics.xPos = window->getSize().x + getGlobalBounds().width; spritePhysics.xPos = window->getSize().x + getGlobalBounds().width;
else if (spritePhysics.xPos >= window->getSize().x + getGlobalBounds().width) else if (spritePhysics.xPos >= window->getSize().x + getGlobalBounds().width)
spritePhysics.xPos = -getGlobalBounds().width; spritePhysics.xPos = -getGlobalBounds().width;
if (spritePhysics.yPos <= -getGlobalBounds().height) if (spritePhysics.yPos <= -getGlobalBounds().height)
spritePhysics.yPos = window->getSize().y + getGlobalBounds().height; spritePhysics.yPos = window->getSize().y + getGlobalBounds().height;
else if (spritePhysics.yPos >= window->getSize().y + getGlobalBounds().height) else if (spritePhysics.yPos >= window->getSize().y + getGlobalBounds().height)
spritePhysics.yPos = -getGlobalBounds().height; spritePhysics.yPos = -getGlobalBounds().height;
} else if (edgeBehavior == IGNORE) { } else if (edgeBehavior == IGNORE) {
if (spritePhysics.xPos <= -getGlobalBounds().width || if (spritePhysics.xPos <= -getGlobalBounds().width ||
spritePhysics.xPos >= window->getSize().x + getGlobalBounds().width || spritePhysics.xPos >= window->getSize().x + getGlobalBounds().width ||
spritePhysics.yPos <= -getGlobalBounds().height || spritePhysics.yPos <= -getGlobalBounds().height ||
spritePhysics.yPos >= window->getSize().y + getGlobalBounds().height) spritePhysics.yPos >= window->getSize().y + getGlobalBounds().height)
toErase = true; toErase = true;
} }
spritePhysics.direction -= spritePhysics.rotVelocity; spritePhysics.direction -= spritePhysics.rotVelocity;
spritePhysics.direction = fmod(spritePhysics.direction, 360); spritePhysics.direction = fmod(spritePhysics.direction, 360);
if (spritePhysics.direction < 0) if (spritePhysics.direction < 0)
spritePhysics.direction += 360; spritePhysics.direction += 360;
if (spriteAnimation.isAnimated) { if (spriteAnimation.isAnimated) {
if (spriteAnimation.clock.getElapsedTime().asSeconds() > spriteAnimation.frameLength) { if (spriteAnimation.clock.getElapsedTime().asSeconds() > spriteAnimation.frameLength) {
spriteAnimation.currframe++; spriteAnimation.currframe++;
if (spriteAnimation.currframe % spriteAnimation.columns == 0) { if (spriteAnimation.currframe % spriteAnimation.columns == 0) {
spriteAnimation.textureRect.left = 0; spriteAnimation.textureRect.left = 0;
spriteAnimation.textureRect.top += spriteAnimation.height; spriteAnimation.textureRect.top += spriteAnimation.height;
} else } else
spriteAnimation.textureRect.left += spriteAnimation.height; spriteAnimation.textureRect.left += spriteAnimation.height;
setTextureRect(spriteAnimation.textureRect); setTextureRect(spriteAnimation.textureRect);
spriteAnimation.clock.restart(); spriteAnimation.clock.restart();
if (spriteAnimation.currframe == spriteAnimation.numFrames) { if (spriteAnimation.currframe == spriteAnimation.numFrames) {
spriteAnimation.isPlayed = true; spriteAnimation.isPlayed = true;
spriteAnimation.currframe = 0; spriteAnimation.currframe = 0;
spriteAnimation.textureRect.left = 0; spriteAnimation.textureRect.left = 0;
spriteAnimation.textureRect.top = 0; spriteAnimation.textureRect.top = 0;
} }
spriteAnimation.clock.restart(); spriteAnimation.clock.restart();
} }
} }
setPosition(spritePhysics.xPos, spritePhysics.yPos); setPosition(spritePhysics.xPos, spritePhysics.yPos);
setRotation(-spritePhysics.direction); setRotation(-spritePhysics.direction);
} }
void accelerate(float override = 0, bool ignoreMax = false) { void accelerate(float override = 0, bool ignoreMax = false) {
if (override != 0) spritePhysics.velocity += override; if (override != 0) spritePhysics.velocity += override;
else spritePhysics.velocity += spritePhysics.acceleration; else spritePhysics.velocity += spritePhysics.acceleration;
if (!ignoreMax && spritePhysics.velocity > spritePhysics.maxVelocity) spritePhysics.velocity = spritePhysics.maxVelocity; if (!ignoreMax && spritePhysics.velocity > spritePhysics.maxVelocity) spritePhysics.velocity = spritePhysics.maxVelocity;
if (!ignoreMax && spritePhysics.velocity < spritePhysics.minVelocity) spritePhysics.velocity = spritePhysics.minVelocity; if (!ignoreMax && spritePhysics.velocity < spritePhysics.minVelocity) spritePhysics.velocity = spritePhysics.minVelocity;
} }
void rotAccel(float override = 0, bool ignoreMax = false) { void rotAccel(float override = 0, bool ignoreMax = false) {
if (override != 0) spritePhysics.rotVelocity += override; if (override != 0) spritePhysics.rotVelocity += override;
else spritePhysics.rotVelocity += spritePhysics.rotAcceleration; else spritePhysics.rotVelocity += spritePhysics.rotAcceleration;
if (!ignoreMax && spritePhysics.rotVelocity > spritePhysics.maxRotVelocity) spritePhysics.rotVelocity = spritePhysics.maxRotVelocity; if (!ignoreMax && spritePhysics.rotVelocity > spritePhysics.maxRotVelocity) spritePhysics.rotVelocity = spritePhysics.maxRotVelocity;
else if (!ignoreMax && -spritePhysics.rotVelocity > spritePhysics.maxRotVelocity) spritePhysics.rotVelocity = -spritePhysics.maxRotVelocity; else if (!ignoreMax && -spritePhysics.rotVelocity > spritePhysics.maxRotVelocity) spritePhysics.rotVelocity = -spritePhysics.maxRotVelocity;
} }
void turn(float degrees) { void turn(float degrees) {
spritePhysics.direction -= degrees; spritePhysics.direction -= degrees;
setRotation(-spritePhysics.direction); setRotation(-spritePhysics.direction);
} }
float getXPos() { float getXPos() {
return spritePhysics.xPos; return spritePhysics.xPos;
} }
float getYPos() { float getYPos() {
return spritePhysics.yPos; return spritePhysics.yPos;
} }
void setPosition(float xPos, float yPos) { void setPosition(float xPos, float yPos) {
spritePhysics.xPos = xPos; spritePhysics.xPos = xPos;
spritePhysics.yPos = yPos; spritePhysics.yPos = yPos;
sf::Sprite::setPosition(sf::Vector2f(xPos, yPos)); sf::Sprite::setPosition(sf::Vector2f(xPos, yPos));
} }
void setPosition(const sf::Vector2f &vec) { void setPosition(const sf::Vector2f &vec) {
spritePhysics.xPos = vec.x; spritePhysics.xPos = vec.x;
spritePhysics.yPos = vec.y; spritePhysics.yPos = vec.y;
sf::Sprite::setPosition(vec); sf::Sprite::setPosition(vec);
} }
float getDirection() { float getDirection() {
return spritePhysics.direction; return spritePhysics.direction;
} }
void setDirection(float angle) { void setDirection(float angle) {
spritePhysics.direction = angle; spritePhysics.direction = angle;
setRotation(-angle); setRotation(-angle);
} }
void setVelocity(float velo) { void setVelocity(float velo) {
spritePhysics.velocity = velo; spritePhysics.velocity = velo;
} }
float getVelocity() { float getVelocity() {
return spritePhysics.velocity; return spritePhysics.velocity;
} }
float getRotVelocity() { float getRotVelocity() {
return spritePhysics.rotVelocity; return spritePhysics.rotVelocity;
}; };
void setMaxVelocity(float velo) { void setMaxVelocity(float velo) {
spritePhysics.maxVelocity = velo; spritePhysics.maxVelocity = velo;
} }
void setMinVelocity(float velo) { void setMinVelocity(float velo) {
spritePhysics.minVelocity = velo; spritePhysics.minVelocity = velo;
} }
void setMaxRotVelocity(float velo) { void setMaxRotVelocity(float velo) {
spritePhysics.maxRotVelocity = velo; spritePhysics.maxRotVelocity = velo;
} }
void setEdgeBehavior(EdgeBehavior behavior) { void setEdgeBehavior(EdgeBehavior behavior) {
edgeBehavior = behavior; edgeBehavior = behavior;
} }
bool toBeErased() const { bool toBeErased() const {
return toErase; return toErase;
} }
Animation getAnimation() { Animation getAnimation() {
return spriteAnimation; return spriteAnimation;
} }
string getType() { string getType() {
return type; return type;
} }
void setType(string type) { void setType(string type) {
this->type = std::move(type); this->type = std::move(type);
} }
}; };
#endif //SFML_TEMPLATE_SPRITE_H #endif //SFML_TEMPLATE_SPRITE_H

View file

@ -1 +1 @@
# Asteroids Clone # Asteroids Clone

50
Rider.h
View file

@ -1,25 +1,25 @@
// //
// Created by benmo on 10/13/2020. // Created by benmo on 10/13/2020.
// //
#ifndef SFML_TEMPLATE_RIDER_H #ifndef SFML_TEMPLATE_RIDER_H
#define SFML_TEMPLATE_RIDER_H #define SFML_TEMPLATE_RIDER_H
class Rider : public MySprite { class Rider : public MySprite {
protected: protected:
bool followsDirection = false, followsPosition = true; bool followsDirection = false, followsPosition = true;
public: public:
Rider(const sf::Texture &texture, float scale) : MySprite(texture, scale) {} Rider(const sf::Texture &texture, float scale) : MySprite(texture, scale) {}
bool doesFollowDirection() const { bool doesFollowDirection() const {
return followsDirection; return followsDirection;
} }
bool doesFollowPosition() const { bool doesFollowPosition() const {
return followsPosition; return followsPosition;
} }
}; };
#endif //SFML_TEMPLATE_RIDER_H #endif //SFML_TEMPLATE_RIDER_H

182
Ship.h
View file

@ -1,91 +1,91 @@
// //
// Created by benmo on 9/25/2020. // Created by benmo on 9/25/2020.
// //
#ifndef SFML_TEMPLATE_SHIP_H #ifndef SFML_TEMPLATE_SHIP_H
#define SFML_TEMPLATE_SHIP_H #define SFML_TEMPLATE_SHIP_H
class Ship : public Mount { class Ship : public Mount {
public: public:
Ship(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : Mount(texture, scale, xPos, yPos, velocity, direction) {} Ship(const sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) : Mount(texture, scale, xPos, yPos, velocity, direction) {}
void shoot(std::vector<MySprite> &projectiles, Sound &sound, sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) { void shoot(std::vector<MySprite> &projectiles, Sound &sound, sf::Texture &texture, float scale, float xPos, float yPos, float velocity, float direction) {
projectiles.emplace_back(texture, scale, xPos, yPos, velocity, direction); projectiles.emplace_back(texture, scale, xPos, yPos, velocity, direction);
sound.play(); sound.play();
} }
bool hit(RenderWindow &window, vector<MySprite> &animations, Texture &explosionTexture, default_random_engine &gen) { bool hit(RenderWindow &window, vector<MySprite> &animations, Texture &explosionTexture, default_random_engine &gen) {
uniform_int_distribution<int> angle(0, 359); uniform_int_distribution<int> angle(0, 359);
animations.emplace_back(explosionTexture, 100, getXPos(), getYPos(), 0, angle(gen)); animations.emplace_back(explosionTexture, 100, getXPos(), getYPos(), 0, angle(gen));
animations[animations.size() - 1].makeAnimated(5, 5, 0.01,23); animations[animations.size() - 1].makeAnimated(5, 5, 0.01,23);
setPosition(window.getSize().x/2, window.getSize().y/2); setPosition(window.getSize().x/2, window.getSize().y/2);
setDirection(0); setDirection(0);
setVelocity(0); setVelocity(0);
lives--; lives--;
return lives <= 0; return lives <= 0;
} }
void newLife(vector<MySprite> &lifeVec, Texture &life, RenderWindow &window, Sound &sound) { void newLife(vector<MySprite> &lifeVec, Texture &life, RenderWindow &window, Sound &sound) {
setNumLivesAdded(getNumLivesAdded() + 1); setNumLivesAdded(getNumLivesAdded() + 1);
setLives(getLives() + 1); setLives(getLives() + 1);
lifeVec.emplace_back(life, 20,window.getSize().x - ((getLives() - 1) * 40 + 25), 25, 0,270); lifeVec.emplace_back(life, 20,window.getSize().x - ((getLives() - 1) * 40 + 25), 25, 0,270);
sound.play(); sound.play();
} }
int getLives() const { int getLives() const {
return lives; return lives;
} }
void setLives(int lives) { void setLives(int lives) {
this->lives = lives; this->lives = lives;
} }
void setShield(bool shield, Texture* texture = nullptr, float scale = 0, Clock* timer = nullptr) { void setShield(bool shield, Texture* texture = nullptr, float scale = 0, Clock* timer = nullptr) {
this->shield = shield; this->shield = shield;
if (shield) { if (shield) {
Rider temp(*texture, scale); Rider temp(*texture, scale);
temp.setType("Shield"); temp.setType("Shield");
addRider(temp); addRider(temp);
timer->restart(); timer->restart();
} else { } else {
for (int i = 0; i < riders.size(); i++) { for (int i = 0; i < riders.size(); i++) {
if (riders[i].getType() == "Shield") removeRider(i); if (riders[i].getType() == "Shield") removeRider(i);
} }
} }
} }
bool hasShield() const { bool hasShield() const {
return shield; return shield;
} }
int getScore() const { int getScore() const {
return score; return score;
} }
void setScore(int score) { void setScore(int score) {
this->score = score; this->score = score;
} }
int getNewLifeScore() const { int getNewLifeScore() const {
return newLifeScore; return newLifeScore;
} }
int getNumLivesAdded() const { int getNumLivesAdded() const {
return newLives; return newLives;
} }
void setNumLivesAdded(int numLives) { void setNumLivesAdded(int numLives) {
newLives = numLives; newLives = numLives;
} }
private: private:
int lives = 3, score = 0, newLifeScore = 10000, newLives = 0; int lives = 3, score = 0, newLifeScore = 10000, newLives = 0;
bool shield; bool shield;
}; };
#endif //SFML_TEMPLATE_SHIP_H #endif //SFML_TEMPLATE_SHIP_H

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -1,37 +1,37 @@
#include <iostream> // for standard input/output #include <iostream> // for standard input/output
#include <random> #include <random>
#include <chrono> #include <chrono>
using namespace std; // using the standard namespace using namespace std; // using the standard namespace
#include <SFML/Graphics.hpp> // include the SFML Graphics Library #include <SFML/Graphics.hpp> // include the SFML Graphics Library
#include <SFML/Audio.hpp> #include <SFML/Audio.hpp>
#include "Collision.h" #include "Collision.h"
using namespace sf; // using the sf namespace using namespace sf; // using the sf namespace
#include "MySprite.h" #include "MySprite.h"
#include "Rider.h" #include "Rider.h"
#include "Mount.h" #include "Mount.h"
#include "Ship.h" #include "Ship.h"
#include "Asteroid.h" #include "Asteroid.h"
#include "Menu.h" #include "Menu.h"
#include "Game.h" #include "Game.h"
int main() { int main() {
bool play = true; bool play = true;
Time mTime = Time::Zero; Time mTime = Time::Zero;
int loop = 0; int loop = 0;
while (play) { while (play) {
Menu menu(loop, mTime); Menu menu(loop, mTime);
if (menu.result == EXIT_SUCCESS) { if (menu.result == EXIT_SUCCESS) {
Game game(menu.musicPicked, menu.mTime); Game game(menu.musicPicked, menu.mTime);
if (game.result == 1) play = false; if (game.result == 1) play = false;
loop = game.loop; loop = game.loop;
mTime = game.mTime; mTime = game.mTime;
} }
else play = false; else play = false;
} }
return 0; return 0;
} }

15
scores
View file

@ -1,5 +1,10 @@
19/10/2020 107800 19/10/2020 107800
19/10/2020 12100 19/10/2020 12100
19/10/2020 8700 19/10/2020 8700
19/10/2020 1300 21/10/2020 4900
19/10/2020 100 21/10/2020 2300
21/10/2020 2100
21/10/2020 1400
19/10/2020 1300
21/10/2020 800
21/10/2020 200